3 resultados para synchrotron radiation

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The crystal structure of raite was solved and refined from data collected at Beamline Insertion Device 13 at the European Synchrotron Radiation Facility, using a 3 × 3 × 65 μm single crystal. The refined lattice constants of the monoclinic unit cell are a = 15.1(1) Å; b = 17.6(1) Å; c = 5.290(4) Å; β = 100.5(2)°; space group C2/m. The structure, including all reflections, refined to a final R = 0.07. Raite occurs in hyperalkaline rocks from the Kola peninsula, Russia. The structure consists of alternating layers of a hexagonal chicken-wire pattern of 6-membered SiO4 rings. Tetrahedral apices of a chain of Si six-rings, parallel to the c-axis, alternate in pointing up and down. Two six-ring Si layers are connected by edge-sharing octahedral bands of Na+ and Mn3+ also parallel to c. The band consists of the alternation of finite Mn–Mn and Na–Mn–Na chains. As a consequence of the misfit between octahedral and tetrahedral elements, regions of the Si–O layers are arched and form one-dimensional channels bounded by 12 Si tetrahedra and 2 Na octahedra. The channels along the short c-axis in raite are filled by isolated Na(OH,H2O)6 octahedra. The distorted octahedrally coordinated Ti4+ also resides in the channel and provides the weak linkage of these isolated Na octahedra and the mixed octahedral tetrahedral framework. Raite is structurally related to intersilite, palygorskite, sepiolite, and amphibole.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aa3 type cytochrome c oxidase consisting of the core subunits I and II only was isolated from the soil bacterium Paracoccus denitrificans and crystallized as complex with a monoclonal antibody Fv fragment. Crystals could be grown in the presence of a number of different nonionic detergents. However, only undecyl-β-d-maltoside and cyclohexyl-hexyl-β-d-maltoside yielded well-ordered crystals suitable for high resolution x-ray crystallographic studies. The crystals belong to space group P212121 and diffract x-rays to at least 2.5 Å (1 Å = 0.1 nm) resolution using synchrotron radiation. The structure was determined to a resolution of 2.7 Å using molecular replacement and refined to a crystallographic R-factor of 20.5% (Rfree = 25.9%). The refined model includes subunits I and II and the 2 chains of the Fv fragment, 2 heme A molecules, 3 copper atoms, and 1 Mg/Mn atom, a new metal (Ca) binding site, 52 tentatively identified water molecules, and 9 detergent molecules. Only four of the water molecules are located in the cytoplasmic half of cytochrome c oxidase. Most of them are near the interface of subunits I and II. Several waters form a hydrogen-bonded cluster, including the heme propionates and the Mg/Mn binding site. The Fv fragment binds to the periplasmic polar domain of subunit II and is critically involved in the formation of the crystal lattice. The crystallization procedure is well reproducible and will allow for the analysis of the structures of mechanistically interesting mutant cytochrome c oxidases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microplanar beam radiation therapy has been proposed to treat brain tumors by using a series of rapid exposures to an array of parallel x-ray beams, each beam having uniform microscopic thickness and macroscopic breadth (i.e., microplanar). Thirty-six rats were exposed head-on either to an upright 4-mm-high, 20- or 37-microns-wide beam or to a horizontal 7-mm-wide, 42-microns-high beam of mostly 32- to 126-keV, minimally divergent x-rays from the X17 wiggler at the National Synchrotron Light Source at Brookhaven National Laboratory. Parallel slices of the head, separated at either 75 or 200 microns on center, were exposed sequentially at 310-650 grays (Gy) per second until each skin-entrance absorbed dose reached 312, 625, 1250, 2500, 5000, or 10,000 Gy. The rats were euthanized 2 weeks or 1 month later. Two rats with 10,000-Gy-entrance slices developed brain tissue necrosis. All the other 10,000- and 5000-Gy-entrance slices and some of the 2500- and 1250-Gy-entrance slices showed loss of neuronal and astrocytic nuclei and their perikarya. No other kind of brain damage was evident histologically in any rat with entrance absorbed doses < or = 5000 Gy. Brain tissues in and between all the 312- and 625-Gy-entrance slices appeared normal. This unusual resistance to necrosis is central to the rationale of microplanar beam radiation therapy for brain tumors.